



Data sheet

# **Electric expansion valves** Types AKVA 10, 15 & 20



AKVA are electric expansion valves designed for ammonia refrigerating plant.

The AKVA valves are normally controlled by a controller from Danfoss' range of ADAP-KOOL<sup>®</sup> controllers.

The AKVA valves are supplied as a component programme, as follows:

- Separate valve
- Separate coil with terminal box or cable
- Spare parts in the form upper part, orifice and filter

The individual capacities are indicated with a number forming part of the type designation. The number represents the size of the orifice of the valve in question.

A valve with orifice 3 will for example be designated AKVA 10-3.

The orifice assembly is replaceable.

#### Features

- For HCFC, HFC, R717 (Ammonia) and R744 (CO<sub>2</sub>)
- The valve requires no adjustment
- Wide regulation range
- Replaceable orifice assembly
- Wide range of coils for d.c. and a.c.
- Quick reaction in whole range of stated capacity.

#### Approvals

DEMKO, Denmark SETI, Finland SEV, Switzerland

AKVA 20 are CE marked according to Pressure Equipment Directive 97/23

- In some applications AKVA can be used both as expansion valve and solenoid valve.
- Classification: DNV, CRN, BV, EAC etc.
  To get an updated list of certification on the products please contact your local Danfoss Sales Company.

در UL listed to U8.S. og Canadian standards الاتاق (separate code. nos.)



### Contents

|                             | Page |
|-----------------------------|------|
| Features                    | 1    |
| Approvals                   | 1    |
| Technical data              |      |
| Rated capacity and ordering | 4    |
| Capacity                    | 8    |
| Dimensioning                | 8    |
| Design                      | 12   |
| Function                    | 13   |
| Dimension and weight        | 13   |
| Recommandations             | 14   |



#### **Technical data**

The AKVA 10 valves covers a capacity range from 4 kW to 100 kW (R 717) and are divided up into 8 capacity ranges.

The AKVA 10 valve bodies are made in stainless steel and have weld connections.

<u>The AKVA 15</u> valves have flange connections. The valve covers a capacity range from 125 kW to 500 kW (R 717) and are divided up into 4 capacity ranges.

<u>The AKVA 20</u> valves cover a capacity range from 500 kW to 3150 kW (R 717) and are divided up into 5 capacity ranges.

The AKVA 20 valve has weld connections.

The AKVA valves can be used for:

- Flooded evaporation (high/low pressure)
- Pump separators
- Direct expansion. See appendix.

If AKVA has to be used in chillers please contact Danfoss.

The AKVA can be used for HCFC, HFC, R717 (Ammonia) and R744 ( $CO_2$ ).

| Valve type                                     | AKVA 10                          | AKVA 15                          | AKVA 20                          |
|------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Tolerance of coil voltage                      | +10/-15%                         | +10 / -15%                       | +10/-15%                         |
| Enclosure to IEC 529                           | Max. IP 67                       | Max. IP 67                       | Max. IP 67                       |
| Working principle<br>( Pulse-width modulation) | PWM                              | PWM                              | PWM                              |
| Recommend period of time                       | 6 seconds                        | 6 seconds                        | 6 seconds                        |
| Capacity (R717)                                | 4 to 100 kW                      | 125 to 500 kW                    | 500 to 3150 kW                   |
| Regulation range                               | 10 - 100%                        | 10 - 100%                        | 10 - 100%                        |
| Connection                                     | Weld                             | Weld                             | Weld                             |
| Media temperature                              | – 50 to 60°C                     | – 40 to 60°C                     | – 40 to 60°C                     |
| Ambient temperature                            | – 50 to 50 °C                    | – 40 to 50 °C                    | – 40 to 50 °C                    |
| Leak of valve seat                             | < 0.02% of k <sub>v</sub> -value | < 0.02% of k <sub>v</sub> -value | < 0.02% of k <sub>v</sub> -value |
| MOPD                                           | 18 bar                           | 22 bar                           | 18 bar                           |
| Filter                                         | Internal 100 µm replaceable      | external 100 μm                  | external 100 μm                  |
| Max. working pressure                          | PS = 42 bar g                    | PS = 42 bar g                    | PS = 42 bar g                    |
|                                                |                                  |                                  |                                  |



Code no.

#### Data sheet | Electric expansion valves, types AKVA 10, 15 & 20

Valve type

Rated capacity<sup>1</sup>)

# Rated capacity and ordering







Connections

Code no.

Connections

k<sub>v</sub>-value

<sup>1</sup>) Rated capacities are based on Condensing temperature  $t_c = 32^{\circ}C$ 

Liquid temperature  $t_c = 32^{\circ}C$ 

Evaporating temperature  $t_e = 5^{\circ}C$ 

<sup>2</sup>) Incl. bolts and gaskets but without flanges

#### Flange set for AKVA 15

| Valve type     | Connection (in.) | Code no. |
|----------------|------------------|----------|
| AKVA 15-1 to 4 | 3/4              | 027N1220 |
|                | 1                | 027N1225 |



**Ordering** (continued) Accessories

#### Strainer

On plants with ammonia and similar industrial plant a strainer must be mounted in front of AKVA 15 and AKVA 20. AKVA 10 has built-in strainer and external strainer is not necessary.

Recommended strainer for AKVA 15 / 20

| Strainer type | Code no. |                             |
|---------------|----------|-----------------------------|
|               | House    | Strainer insert 100 $\mu$ m |
| FIA 20 D STR  | 148H3086 | 148H3122                    |
| FIA 25 D STR  | 148H3087 |                             |
| FIA 32 D STR  | 148H3088 | 148H3123                    |
| FIA 40 D STR  | 148H3089 |                             |
| FIA 50 D STR  | 148H3090 | 148H3157                    |

For further information: see Danfoss catalogue RD6CD

#### Examples of combinations





#### **Ordering** (continued) Spare

#### **AKVA 10**

| Orifica |  |
|---------|--|

|   | Onne      |          |                   |
|---|-----------|----------|-------------------|
|   | Туре      | Code no. | Contents          |
| Ŧ | AKVA 10-1 | 068F0526 |                   |
| — | AKVA 10-2 | 068F0527 |                   |
|   | AKVA 10-3 | 068F0528 |                   |
|   | AKVA 10-4 | 068F0529 | 1 pcs. orifice    |
|   | AKVA 10-5 | 068F0530 | 1 pcs. Al. gasket |
|   | AKVA 10-6 | 068F0531 |                   |
|   | AKVA 10-7 | 068F0532 |                   |
|   | AKVA 10-8 | 068F0533 |                   |
|   |           |          |                   |

| Filter     | Code no. | Contents                                                     |
|------------|----------|--------------------------------------------------------------|
|            | 068F0540 | 10 pcs. filters<br>10 pcs. Al. gaskets                       |
| Upper part |          |                                                              |
|            | 068F5045 | 1 pcs. armature<br>1 pcs. armature tube<br>1 pcs. Al. gasket |

# **AKVA 15**



| Piston     |          |                        |  |
|------------|----------|------------------------|--|
| Туре       | Code no. | Contents               |  |
| AKVA 15-1  | 068F5265 | 1 pcs_piston assembly  |  |
| AKVA 15-2  | 068F5266 | 1 pcs. gasket          |  |
| AKVA 15-3  | 068F5267 | 1 pcs. O-ring          |  |
| AKVA 15-4  | 068F5268 | 2 pcs. labels          |  |
|            |          |                        |  |
| Gasket set | 068F5264 | Complete<br>gasket set |  |

| Orifice set | Code no. | Contents                                                         |
|-------------|----------|------------------------------------------------------------------|
| 중₫          | 068F5261 | Main orifice<br>Pilot orifice<br>Al gaskets<br>O-rings<br>Gasket |

#### Upper part





# **AKVA 20**



| Туре        | Code no. | Contents               |
|-------------|----------|------------------------|
| AKVA 20-0.6 | 042H2039 |                        |
| AKVA 20-1   | 042H2040 | 7                      |
| AKVA 20-2   | 042H2041 | 1 pcs. piston assembly |
| AKVA 20-3   | 042H2042 | 3 pcs. O-rings         |
| AKVA 20-4   | 042H2043 |                        |
| AKVA 20-5   | 042H2044 |                        |
| Orifice set |          |                        |
| <b>T</b>    |          | C                      |

Ŧ

| Туре        | Code no. | Contents                                                   |  |
|-------------|----------|------------------------------------------------------------|--|
| AKVA 20-0.6 | 068F5270 | Main orifice dia 8 mm                                      |  |
| AKVA 20-1   | 068F5270 | Pilot orifice, dia. 1.8 mm                                 |  |
| AKVA 20-2   | 068F5270 | 2 pcs. Al. gaskets                                         |  |
| AKVA 20-3   | 068F5270 | O-ring                                                     |  |
| AKVA 20-4   | 068F5271 | Main orifice, dia. 14 mm                                   |  |
| AKVA 20-5   | 068F5271 | Pilot orifice, dia. 2.4 mm<br>2 pcs. Al. gaskets<br>O-ring |  |
|             |          |                                                            |  |
| Gasket set  | 042H0160 | Complete gasket set for new and old valves                 |  |
|             |          |                                                            |  |





# **Ordering** (continued) Coils for AKVA valves

|      | r    |      | 1    | (    |      |
|------|------|------|------|------|------|
| AKVA | AKVA | AKVA | AKVA | AKVA | AKVA |
| 10-1 | 10-6 | 10-7 | 15-1 | 20-1 | 20-4 |
| 10-2 |      | 10-8 | 15-2 | 20-2 | 20-5 |
| 10-3 |      |      | 15-3 | 20-3 |      |
| 10-4 |      |      | 15-4 |      |      |
| 10-5 |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |

| D.C. coils                                                                           | Code no.                               |   |   |   |   |   |   |
|--------------------------------------------------------------------------------------|----------------------------------------|---|---|---|---|---|---|
| 220 V d.c. 20 W, standard<br>with terminal box                                       | 018F6851                               | + | + | + | + | + | + |
| 100 V d.c. 18 W, special<br>with terminal box<br>with DIN plugs                      | 018F6780                               | + | + | + | + | + | + |
| 230 V d.c. 18 W, special<br>with terminal box<br>with DIN plugs                      | 018F6781')<br>018F6991')               | + | + | + | + | + | + |
| 230 V d.c. 18 W, special<br>with 2.5 m cable<br>with 4.0 m cable<br>with 8.0 m cable | 018F6288')<br>018F6278')<br>018F6279') | + | + | + | + | + | + |

<sup>1</sup>) Recommended for commercial refrigeration plant

| A.C. coils                                                    | Code no.             |   |   |   |   |   |   |
|---------------------------------------------------------------|----------------------|---|---|---|---|---|---|
| 240 V a.c. 10 W, 50 Hz with terminal box with DIN plugs       | 018F6702<br>018F6177 | + | + | _ | + | _ | _ |
| 240 V a.c. 10 W, 60 Hz<br>with terminal box<br>with DIN plugs | 018F6713             | + | + | _ | + | _ | _ |
| 240 V a.c. 12 W, 50 Hz<br>with terminal box                   | 018F6802             | + | + | + | + | + | _ |
| 220 V a.c. 10 W, 50 Hz<br>with terminal box<br>with DIN plugs | 018F6701<br>018F6176 | + | + | _ | + | _ | _ |
| 220 V a.c. 10 W, 60 Hz<br>with terminal box<br>with DIN plugs | 018F6714<br>018F6189 | + | + | _ | + | _ | _ |
| 220 V a.c. 12 W, 50 Hz<br>with terminal box                   | 018F6801             | + | + | - | + | + | _ |
| 220 V a.c. 12 W, 60 Hz<br>with terminal box                   | 018F6814             | + | + | _ | + | + | _ |
| 115 V a.c. 10 W, 50 Hz<br>with terminal box<br>with DIN plugs | 018F6711<br>018F6186 | + | + | _ | + | _ | _ |
| 115 V a.c. 10 W, 60 Hz<br>with terminal box<br>with DIN plugs | 018F6710<br>018F6185 | + | + | _ | + | _ | _ |
| 110 V a.c. 12 W, 50 Hz<br>with terminal box                   | 018F6811             | + | + | _ | + | + | _ |
| 110 V a.c. 12 W, 60 Hz<br>with terminal box                   | 018F6813             | + | + | _ | + | + | _ |
| 24 V a.c. 10 W, 50 Hz<br>with terminal box<br>with DIN plugs  | 018F6707<br>018F6182 | + | _ | _ | + | _ | _ |
| 24 V a.c. 10 W, 60 Hz<br>with terminal box<br>with DIN plugs  | 018F6715             | + | _ | _ | + | _ | _ |
| 24 V a.c. 12 W, 50 Hz<br>with terminal box                    | 018F6807             | + | - | _ | + | + | + |
| 24 V a.c. 12 W, 60 Hz<br>with terminal box                    | 018F6815             | + | _ | _ | + | + | + |
| 24 V a.c. 20 W, 50 Hz<br>with terminal box                    | 018F6901             | + | + | + | + | + | + |
| 24 V a.c. 20 W, 60 Hz<br>with terminal box                    | 018F6902             | + | + | + | + | + | + |



R 717

#### Data sheet | Electric expansion valves, types AKVA 10, 15 & 20

#### Capacity

Range: – 40 to 10°C

| Valve type  | Capacity in kW at pressure drop across valve $\Delta p$ bar |      |      |      |      |      |      |      |  |  |  |  |
|-------------|-------------------------------------------------------------|------|------|------|------|------|------|------|--|--|--|--|
|             | 2                                                           | 4    | 6    | 8    | 10   | 12   | 14   | 16   |  |  |  |  |
| AKVA 10 - 1 | 2.2                                                         | 3.1  | 3.7  | 4.1  | 4.4  | 4.7  | 5.0  | 5.2  |  |  |  |  |
| AKVA 10 - 2 | 3.5                                                         | 4.9  | 5.8  | 6.5  | 7.0  | 7.5  | 7.9  | 8.3  |  |  |  |  |
| AKVA 10 - 3 | 5.6                                                         | 7.7  | 9.1  | 10.2 | 11.1 | 11.9 | 12.5 | 13.1 |  |  |  |  |
| AKVA 10 - 4 | 9.1                                                         | 12.4 | 14.7 | 16.5 | 17.9 | 19.2 | 20.2 | 21.1 |  |  |  |  |
| AKVA 10 - 5 | 14.2                                                        | 19.4 | 22.9 | 25.7 | 28.0 | 29.9 | 31.6 | 33.0 |  |  |  |  |
| AKVA 10 - 6 | 23.0                                                        | 31.2 | 36.4 | 41.4 | 45.0 | 48.1 | 50.7 | 53.1 |  |  |  |  |
| AKVA 10 - 7 | 36.6                                                        | 49.3 | 58.1 | 65.0 | 70.6 | 75.3 | 79.4 | 83.0 |  |  |  |  |
| AKVA 10 - 8 | 59.1                                                        | 78.9 | 93.5 | 104  | 112  | 120  | 126  | 131  |  |  |  |  |
| AKVA 15 - 1 |                                                             | 95.7 | 113  | 127  | 138  | 148  | 156  | 163  |  |  |  |  |
| AKVA 15 - 2 |                                                             | 153  | 181  | 203  | 221  | 236  | 250  | 261  |  |  |  |  |
| AKVA 15 - 3 |                                                             | 231  | 274  | 308  | 335  | 358  | 377  | 395  |  |  |  |  |
| AKVA 15 - 4 |                                                             | 383  | 455  | 510  | 555  | 593  | 625  | 655  |  |  |  |  |
| AKVA 20 - 1 |                                                             | 383  | 455  | 510  | 555  | 593  | 625  | 655  |  |  |  |  |
| AKVA 20 - 2 |                                                             | 612  | 726  | 814  | 886  | 947  | 999  | 1045 |  |  |  |  |
| AKVA 20 - 3 |                                                             | 959  | 1137 | 1275 | 1388 | 1482 | 1564 | 1635 |  |  |  |  |
| AKVA 20 - 4 |                                                             | 1552 | 1836 | 2057 | 2239 | 2391 | 2523 | 2639 |  |  |  |  |
| AKVA 20 - 5 |                                                             | 2479 | 2921 | 3267 | 3550 | 3789 | 3994 | 4174 |  |  |  |  |

#### Correction for subcooling

The liquid injected capacity must be corrected, if the subcooling deviates from 4 K. Use the actual correction factor indicated in the table. Multiply the liquid injected capacity by the correction factor to obtain the corrected capacity.

Correction factors for subcooling  $\Delta t_{sub}$ 

| Correction factor                                                  | 2K   | 4 K  | 10 K | 15 K | 20 K | 25 K | 30 K | 35 K | 40 K | 45 K | 50 K |
|--------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| R 717                                                              | 1.01 | 1.00 | 0.98 | 0.96 | 0.94 | 0.92 | 0.91 | 0.89 | 0.87 | 0.86 | 0.85 |
| Corrected capacity = liquid injected capacity x correction factor. |      |      |      |      |      |      |      |      |      |      |      |

#### Dimensioning

To obtain an expansion valve that will function correctly under different load conditions it is necessary to consider the following points when the valve has to be dimensioned: These points must be dealt with in the following sequence:

- 1. Evaporator capacity
- 2. Pressure drop across the valve
- 3. Correction for subcooling
- 4. Correction for evaporating temperature
- 5. Determination of valve size
- 6. Correctly dimensioned liquid line

antosa

#### Dimensioning

(continued)

#### Example for a direct expansion system

1. Evaporator capacity The evaporator capacity is found in the specifications from the evaporator supplier.

2. Pressure drop across the valve

The pressure drop across the valve directly determines the capacity and must therefore be considered. The pressure drop across the valve is normally

calculated as the condensing pressure less the

evaporating pressure and sundry other pressure drops in the liquid line, distributor, evaporator, etc.

It is indicated in the following formula:  $\Delta p_{valve} = p_c - (p_e + \Delta p_1 + \Delta p_3 + \Delta p_4)$ 

This will give you the following equation:

= 13.5 - (1.9 + 0.2 + 0.8 + 0.1)

 $\Delta p_{valve} = p_c - (p_e + \Delta p_1 + \Delta p_3 + \Delta p_4)$ 

= 10.5 bar



#### Note!

The pressure drop across the liquid line and the distributor system must be calculated on the basis of the valve's max. capacity, as the valve operates with pulse-width modulation.

Example of calculationThe found vaof pressure drop across a valve:valve'' is usedRefrigerant: R 717of valve size''.Condensing temperature:  $35^{\circ}$ C ( $p_e = 13.5$  bar)of valve size''.Evaporating temperature:  $-20^{\circ}$ C ( $p_e = 1.9$  bar) $\Delta p_1 = 0.2$  bar $\Delta p_3 = 0.8$  bar $\Delta p_3 = 0.8$  bar

The found value for "pressure drop across the valve" is used later in the section "Determination

3. Correction for subcooling

 $\Delta p_4 = 0.1$  bar

The evaporator capacity used must be corrected, if the subcooling deviates from 4 K. Use the actual correction factor indicated in the table. Multiply the evaporator capacity by the correction factor to obtain the corrected capacity.

Correction factors for subcooling  $\Delta t_{sub}$ 

|                        |                                                              | 5    |      |      |      |      |      |      |      |      |      |  |  |
|------------------------|--------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|--|--|
| Correction factor      | 2K                                                           | 4 K  | 10 K | 15 K | 20 K | 25 K | 30 K | 35 K | 40 K | 45 K | 50 K |  |  |
| R 717                  | 1.01                                                         | 1.00 | 0.98 | 0.96 | 0.94 | 0.92 | 0.91 | 0.89 | 0.87 | 0.86 | 0.85 |  |  |
| Corrected capacity – e | Corrected capacity – evaporator capacity x correction factor |      |      |      |      |      |      |      |      |      |      |  |  |

Corrected capacity = evaporator capacity x correction factor.

The corrected capacity is used in the section "Determination of valve size".

#### Note:

Too little subcooling may cause flash gas.

Example of correction: Refrigerant: R 717 Evaporator capacity Q<sub>e</sub>: 300 kW Subcooling: 10 K

Correction factor according to the table = 0.98Corrected evaporator capacity =  $300 \times 0.98 = 294$  kW.

antos

# Dimensioning

(continued)

4. Correction for evaporating temperature  $(t_e)$ To obtain a correctly dimensioned valve it is important that the application is considered.

Depending on the application, the valve should have an overcapacity enabling it to cope with the extra amount of refrigeration needed during certain periods, e.g. during the defrost recovery process.

The valve's opening degree should therefore be between 50 and 75% when regulating. In this wav

it is ensured that the valve has a sufficiently wide regulation range, so that it can manage changed loads at or near the normal working point. Correction factors based on the evaporating temperature are indicated below:

| Correction factors for evapore   | orrection factors for evaporating temperature $(t_c)$ |     |      |     |      |      |      |  |  |  |  |  |  |
|----------------------------------|-------------------------------------------------------|-----|------|-----|------|------|------|--|--|--|--|--|--|
| Evaporating temperature $t_e$ °C | 5                                                     | 0   | - 10 | -15 | - 20 | - 30 | - 40 |  |  |  |  |  |  |
| AKVA 10, AKVA 15, AKVA 20        | 1.0                                                   | 1.0 | 1.0  | 1.0 | 1.2  | 1.3  | 1.4  |  |  |  |  |  |  |

#### 5. Determination of valve size

When the valve size meeting the required capacity is selected it is important to note that the capacity indications are the valve's rated capacity, i.e. when the valve is 100% open.

In this section we tell you how the valve's size is determined.

There are three factors that have an influence on the choice of the valve:

- the pressure drop across the valve
- the corrected capacity (correction for subcooling)

 $\Delta p_{valve} = 10.5 \text{ bar}$ 

 $Q_{e \text{ corrected}} = 294 \text{ kW}$ 

the corrected capacity for evaporating temperature

The three factors have been described earlier in this section on dimensioning. When these three factors have been established, the selection of the valve can be made:

- First you multiply the "corrected capacity" by a value stated in the table.
- Use the new value in the capacity table in combination with the pressure drop value.
- Now select the valve size.

| Example of selection of valve                   |                        |
|-------------------------------------------------|------------------------|
| Use as starting point the two earlier mentioned | The dimensioned capa   |
| examples, where the following two values have   | 1.2 x 294 kW = 353 kW. |
| been obtained:                                  | N I . I .              |

Now select a valve size from tabel "Capacity".

dimensioned capacity will then be:

With the given values  $\Delta p_{\text{valve}}$  = 10.5 bar and a capacity of 353 kW, AKVA 15 - 4 is selected.

From tabel "Correction factors for evaporating temperature", factor 1.2 is given for the evaporating temperature -20°C.

This valve will have a capacity of approx. 555 kW.

6. Correctly dimensioned liquid line To obtain a correct supply of liquid to the AKVA valve, the liquid line to the individual AKVA valve must be correctly dimensioned. The liquid flow rate must not exceed 1 m/sec at a fully open valve. This must be observed on account of

the pressure drop in the liquid line (lack of subcooling) and pulsations in the liquid line.

Dimensioning of the liquid line must be based on the capacity of the valve at the pressure drop with which it is operating (cf. capacity table), and not on the evaporator's capacity, see next page



### Dimensioning

(continued)





#### Design





#### Function

The valve capacity is regulated by means of pulse-width modulation. Within a period of six seconds a voltage signal from the controller will be transmitted to and removed from the valve coil. This makes the valve open and close for the flow of refrigerant.



The relation between this opening and closing time indicates the actual capacity. If there is an intense need for refrigeration, the valve will remain open for almost all six seconds of the period. If the required amount of refrigeration is modest, the valve will only stay open during a fraction of the period. The amount of refrigeration needed is determined by the controller.

When no refrigeration is required, the valve will remain closed.

In some applications, AKVA can advantage-ously be used both as expansion valve and solenoid valve. See appendix.

#### **Dimension and weight**



|            |                   | ٨  | P  | C   | Conne           | ection | Weight without coil |
|------------|-------------------|----|----|-----|-----------------|--------|---------------------|
| Valve type |                   | A  | D  | C   | Inlet           | Outlet |                     |
|            |                   | mm | mm | mm  | in.             | in.    | kg                  |
| AKVA 10    | $1 \rightarrow 6$ | 60 | 60 | 113 | <sup>3</sup> /8 | 1/2    | 0.35                |
| AKVA 10    | $7 \rightarrow 8$ | 60 | 60 | 113 | 1/2             | 3/4    | 0.35                |







#### Appendix

Recommandations

It is important to realize when AKVA is operating, that the valve always is fully open or fully closed.

That means that this way of operation should always be considered during the refrigeration design. (Piping, liquid velocity, sub cooling etc.)

Danfoss have the following recommandations/ guidelines to be taken into considerations.

 In 1:1 applications (1 evaporator, 1 condenser and 1 compressor) chillers with a small amount of refrigerant or installed in front of a Plate Heat Exchangers, it must be observed that every time the AKVA is fully open or closed it will have a significant impact on the hole system. (e.g. pressure variations on suction side).

Please observe that the performance of such a system is not only related to one component. (e.g. AKVA) Other factors which is very important to include in the overall refrigeration system design:

- Liquid distribution at and design of evaporator
- total evaporator coil is of adequate length thus superheat can be controlled within the entered period time (normal 6 sec. or 3 sec.)
- mounting principle of temperature sensor, to ensure a steady and fast signal can be detected by the electronic system.

 If pressure dependent valves like, PM with pilots like CVP e.t.c., is installed between evaporator and compressor, it can effect the lifetime of PM, because the piston of the PM will operate together with operation of AKVA. Type of refrigerant and evaporator has a big influende of the size of pulsations after the evaporator and in front of the PM.

ENGINEERING TOMORROW

- AKVA is a direct pressure independent valve unlike TQ, PHTQ and TEAQ, which all are pressure dependent. That means that if non-Danfoss electronic controllers is used, intelligent and fast optimal control is needed, because the quick pressure changes only can be detected and compensated via the electronic control system.
- Liquid lines must be designed according to AKVA capacity and not evaporator capacity.
- To avoid flash-gas ensure sufficient sub-cooling or design liquid lines thus to big pressure drop is avoided, when AKVA is open. If not sufficient subcooling is not obtained (normally 4K) it will have an impact on the lifetime of the vale).
- Where the demand for safety level is extremely high, (e.g. Liquid Level Control in a pump seperator) an extra valve can be installed in front of AKVA to avoid leakage. This valve must be Danfoss type EVRAT.
- Always install a 100  $\mu m$  filter in front of AKVA 15 and AKVA 20 valves.
- If AKVA has to be used in chillers. Please contact Danfoss.

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.