

Data sheet

Capacities

Valve Station, type ICF 15, 20, 25

Based on advanced technology the ICF valve station incorporates several functions in one housing, which can replace a series of conventional mechanical, electro-mechanical and electronically operated valves.

This valve station not only provides a number of advantages in the design phase of a refrigeration plant but also in the installation, service and maintenance.

The ICF valve stations are designed for low and high pressure refrigerants and can be used in pumped liquid lines, liquid injection lines and hot gas lines.

Supplied as a complete assembly, it is fully tested at high pressure and its functions are tested under factory controlled conditions.

One code number equals one application solution.

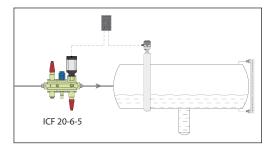
Features

- Designed for industrial refrigeration applications for a maximum working pressure of 52 bar/754 psig.
- Applicable to HCFC, non flammable HFC, R717 (Ammonia) and R744 (CO₂).
 The use of ICF valve stations with flammable hydrocarbons is not recommended.
- Direct weld connections (No leaks through flanges)
- Connection types include butt weld and socket weld
- Low temperature steel housing.

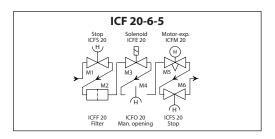
- · Low weight and compact design.
- V-port regulating cones on the control modules ensure optimum regulating accuracy particularly at part load.
- Modular Concept
 Each housing is available with several different connection types and sizes.

 Valve service is performed by replacing the function module.
- Side ports for the connection of pressure gauges, transmitters, sight glasses, service valve etc.

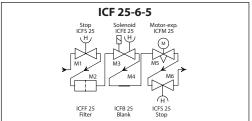
ICF valve station									
Nominal bore	DN≤ 25 (1 in.)	DN 32-40 (1 ¼ - 1 ½")							
Classified for	Fluid group I								
Category	Article 3, paragraph 3	II							


Liquid injection to separator (Expansion)

Application 5


ICF with motorized valve ICM is fundamental to maintain stable liquid level in surge drums and separators. For this application the ICF (20-25)-6-5 is recommended.

The flexibility of the ICF enables safe operation and efficient operation. This requires slightly subcooled or fully saturated liquid. The sight glass provided will help operator determine whether liquid only is flowing through the ICF.


For fail safe operation this type of ICF is equipped with a ICFE solenoid valve in front of the ICM motor operated valve.

Configuration

A simple combination of solenoid valves and motorized valves provide a wide range of capacities for direct expansion

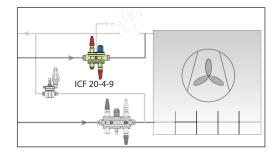
Recommended max. capacities

ICF 20-6 and ICF 25-6; application no. 5 (Liquid injection)

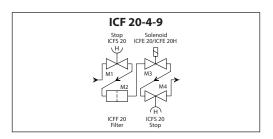
R717

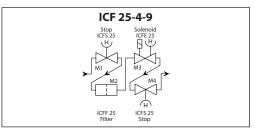
ICF 20-6 / ICF 25-6	20-6 / ICF 25-6 ICF 20-6-5MA33		ICF 20-6-5MA		ICF 20-6-5MB66		ICF 20-6-5HMB		ICF 25-6-5MA33	
M3 - Solenoid Module	ICFE 20			E 20	ICFE 20		ICFE 20H		ICFE 25	
M5 - Expansion Module	ICM 20A33			20A	ICM 20B66		ICM 20B		ICM 25A33	
Max. evaporating capacity	[kW]	[TR]	[kW]	[TR]	[kW]	[TR]	[kW]	[TR]	[kW]	[TR]
@ 75% open expansion	71	20	205	58	565	160	730	207	980	278
K _v (C _v) value	m³/h	lbs/min	m³/h	lbs/min	m³/h	lbs/min	m³/h	lbs/min	m³/h	lbs/min
(complete valve)	0.2	0.23	0.6	0.7	1.4	1.6	2.0	2.3	2.2	2.5

Maximum recommendable capacity. Pipe velocity (1 m/s) used as dimensioning factor. Stated capacity is obtained with a valve opening \leq 75% TE = -20 to -30 °C (-4 to -22 °F), TC = +30 °C (86 °F)


Note:

For larger capacities use larger individual weld-in components such as SVA, FIA, ICS or ICM.




Hot gas defrost Application 9

The ICF 20-4-9 and ICF 25-4-9 are designed to provide the necessary functions for hot gas defrost on evaporators.

Configuration

The maximum flow is typical for most evaporator applications. Evaporator type, frost thickness in fins and pipes as well as required defrost time may change the recommended model.

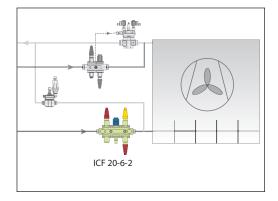
Recommended max. capacities

ICF 20-4 and ICF 25-4; application no. 9 (Hot gas)

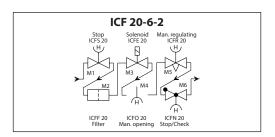
R717

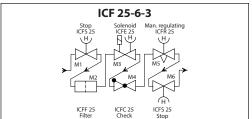
ICF 20-4 / ICF 25-4	ICF 2	0-4-9	ICF 20)-4-9H	ICF 25-4-9		
M3 solenoid module	ICFI	E 20	ICFE	20H	ICFE 25		
Max. defrost massflow @	[kg/h]	[lbs/min]	[kg/h]	[lbs/min]	[kg/h]	[lbs/min]	
Dp = 1 bar (15 psi)	148	5.4	210	7.7	490	18.0	
Equivalent evaporating capacity	[kW]	[TR]	[kW]	[TR]	[kW]	[TR]	
	44.5	12.6	63.1	17.9	147	41.7	
K _v (C _v) value	m³/h	lbs/min	m³/h	lbs/min	m³/h	lbs/min	
(complete valve)	3.3	3.8	4.2	4.9	9.7	11.3	

The stated evaporating capacity is based on the following conditions: TE = -30 °C (-22 °F), TC = +30 °C (86 °F) Defrost conditions: (defrost temperature +10 °C (50 °F) and inlet temperature +40 °C (104 °F))


Note:

Rule of thumb state that $Q_{\text{defrost}} \sim 2~x~Q_{\text{evaporating}}$. For larger capacities use larger individual weld-in components such as SVA, FIA, ICS or ICM.




Liquid feed lines Applications 2 & 3

The ICF 20-6-2(3) and ICF 25-6-2(3) are designed for a typical pumped liquid line in a flooded evaporator system.

Configuration

The ICF is available with different solenoid and expansion module with different capacities. The below ICF configurations shows the appropriate combination of solenoids and expansion capacity for the given conditions.

Recommended max. capacities

ICF 20-6 and ICF 25-6; application no. 2 and 3 (Liquid feed) @ 70% open reg. module (see flow curves)

R717

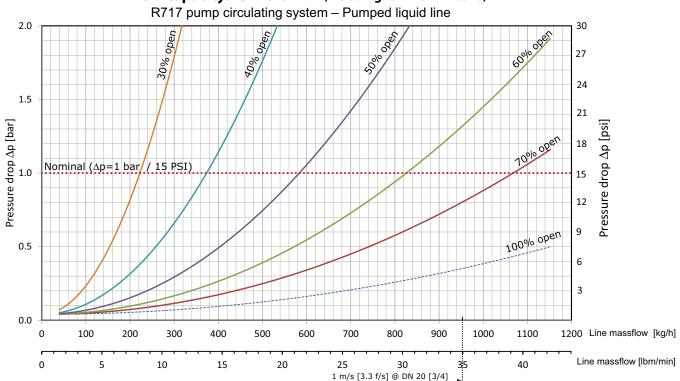
ICF 20-6 / ICF 25-6	ICF 20-6-2RA		ICF 20-	ICF 20-6-2HRB		-6-3RA	ICF 25-6-3RB	
M3 - Solenoid Module	ICFE 20		ICFE 20H		ICFE 25		ICFE 25	
M5 - Manual reg. module	ICFR 20A		ICFR 20B		ICFR 25A		ICFR 25B	
Max. line massflow @ 70% open reg. module*	[kg/h]	[lbs/min]	[kg/h]	[lbs/min]	[kg/h]	[lbs/min]	[kg/h]	[lbs/min]
	1070	39	1620	59	3150	116	5200	191
Equivalent evaporating capacity @ N _{circ} = 3:1	[kW]	[TR]	[kW]	[TR]	[kW]	[TR]	[kW]	[TR]
	135	38	205	58	395	112	650	185
K _v (C _v) value	m³/h	lbs/min	m³/h	lbs/min	m³/h	lbs/min	m³/h	lbs/min
(complete valve)	2.1	2.4	2.6	3.0	5.3	6.1	7.2	8.4

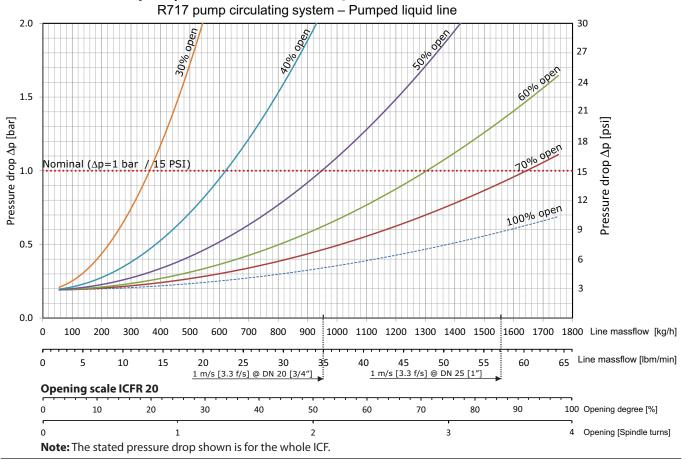
Maximum recommendable capacity. Pipe velocity (1 m/s) used as dimensioning factor.

Stated equivalent capacity is calculated for $n_{circ} = 3:1$, valve opening $\leq 70\%$ TE = -30 °C (-22 °F), TC = +30 °C (86 °F)

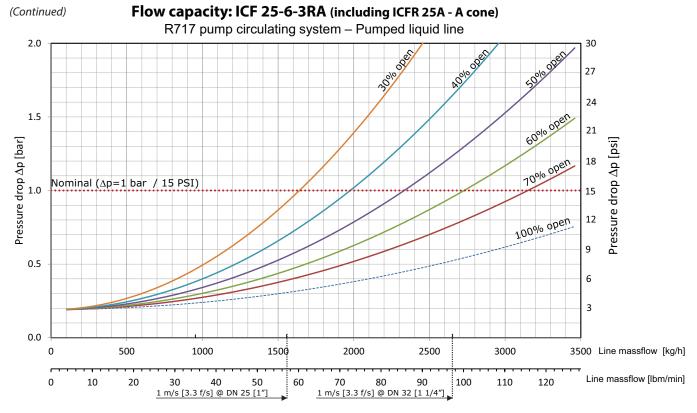
Note:

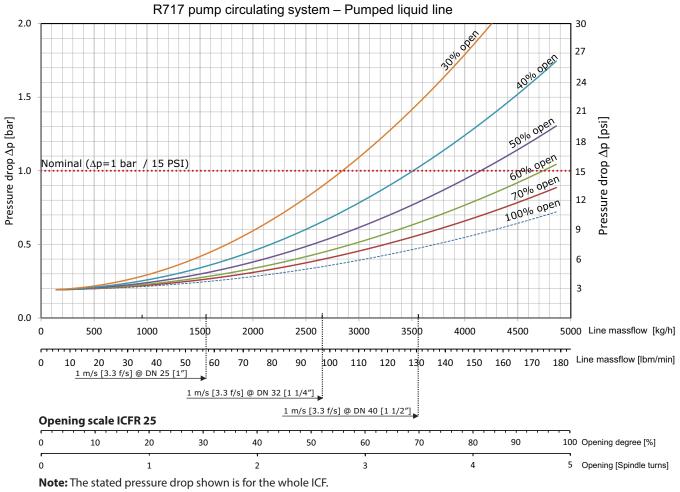
For larger capacities use larger individual weld-in components such as SVA, FIA, ICS or ICM.


^{*} See pressure drop versus massflow and opening degree in below curves.

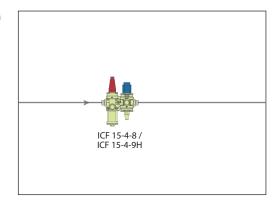

(Continued)

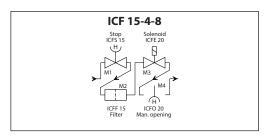
Practical Rule - Finding massflow: Multiply Capacity in TR by: 0.343 x recir rate Multiply capacity in kW by 2.65xrecic rate Example: 50kW; recirc rate 4:1: 530kg/h

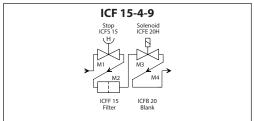

Flow capacity: ICF 20-6-2RA (including ICFR 20A - A cone)


Flow capacity: ICF 20-6-2HRB (including ICFE 20H and ICFR 20B - B cone)

Flow capacity: ICF 25-6-3RB (including ICFR 25B - B cone)




ICF 15


Common solenoid Application 8 & 9

The ICF 15-4-8 and 15-4-9H are designed for both Hot gas lines and Liquid lines in most common refrigeration plants

Configuration

The generic configuration consists of the shown functions. The 2 different capacities shown in the tables below are achieved by 2 variants of the solenoid valve module ICFE 20 and ICFE 20H.

Rated capacities for ICF 15

Туре	Rated capacity 1) [kW]													
	Liquid			Suction vapour			Hot gas			Κ _ν	C _v			
	R717	R22	R134a	R404A	R717	R22	R134a	R404A	R717	R22	R134a	R404A	m³/h	gal/min
ICF 15-4-8	252	54.3	48.9	36.9	11.6	6.1	4.5	5.3	63.0	23.7	19.6	21.0	3.2	3.7
ICF 15-4-9H	350	75.5	68.0	51.3	16.1	8.5	6.3	7.4	87.6	32.9	27.2	29.2	4.2	4.9

¹⁾ Rated liquid and suction vapour capacity is based on evaporating temperature t_e = -10°C, liquid temperature ahead of valve t_l = +25°C, and pressure drop across valve $\Delta p = 0.15$ bar.

Rated hot gas capacity is based on condensing temperature $t_c = +40^{\circ}C$ pressure drop across valve $\Delta p = 0.8$ bar, hot gas temperature $t_h = +65^{\circ}\text{C}$, and subcooling of refrigerant $\Delta t_{sub} = 4$ K.

Capacity

Capacities are based on liquid temperature $t_1 = +25$ °C ahead of valve, evaporating temperature $t_e = -10$ °C, and superheat 0 K.

Liquid capacity Q_I kW

Туре	Liquid capacity Q_e kW at pressure drop across valve Δp bar									
	0.1	0.2	0.3	0.4	0.5					
ICF 15-4-8	211	300	366	426	476					
ICF 15-4-9H		225	399	519	617					

Capacities are based on liquid temperature $t_I = +25$ °C ahead of evaporator. The table values refer to the evaporator

capacity and are given as a function of evaporating temperature te and pressure drop Δp across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.

Suction vapo	our capacity Q _e kW				•	. , . ,	(14113)				
Turno	Pressure drop across valve	Suc	Suction vapour capacity Qe kW at evaporating temperature te °C								
Туре	∆p bar	-40	-30	-20	-10	0	+10				
ICF 15-4-8	0.10	6.3	8.3	10.6	13.1	16.0	19.3				
	0.15	7.5	10.0	12.8	16.0	19.5	23.5				
	0.20	8.5	11.4	14.7	18.4	22.4	27.0				
	0.10										
ICF 15-4-9H	0.15			Not su	uitable						
	0.20										

R 717 (NH₂)

R 717 (NH₃)

Capacity

(continued)

Hot gas capacity Q_h kW

R 717 (NH₃)

		Hot gas capacity Q _e kW								
Turno	Pressure drop across valve	Evaporating temp.t _e = -10° C. Hot gas temp. t _h = t _c + 25° C. Subcooling Δ t _{sub} = 4 K								
Туре		Condensing temperature t _c °C								
	∆p bar	+20	+30	+40	+50	+60				
	0.10	19.6	21.1	22.5	23.7	24.6				
	0.20	27.6	29.6	31.6	33.4	34.9				
ICF 15-4-8	0.40	38.7	41.8	44.5	47.0	49.2				
	0.80	53.9	58.4	62.3	66.0	69.3				
	1.60	73.5	80.4	86.5	92.0	96.7				
	0.10	-	-	-	-	-				
	0.20	20.3	22.0	23.2	24.2	25.2				
ICF 15-4-9H	0.40	46.8	50.5	53.5	56.0	59.0				
	0.80	75.0	81.0	86.5	91.2	95.5				
	1.60	103.3	1125	121.0	1245	135.0				

An increase in hot gas temperature t_h of 10 K, based on t_h = t_c +25°C, reduces valve capacity approx. 2% and vice versa.

A change in evaporating temperature \boldsymbol{t}_{e} changes valve capacity; see correction factor table below.

Correction factor

When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature $t_{\rm e}$.

t _o °C	-40	-30	-20	-10	0	+10
R 717 (NH ₃)	0.89	0.91	0.96	1.0	1.06	1.10

Hot gas capacity G_h kg/h

R 717 (NH₃)

	Hot gas temperature t _h °C	Condensing	Hot gas capacity G _h kg/h at pressure drop across valve ∆p bar								
Туре		temperature t _k °C	0.5	1	2	3	4	5	6		
		25.0	142.0	196.9	270.4	315.7	347.0	368.2	379.8		
ICF 15-4-8	90	35.0	159.4	221.6	305.0	363.4	407.4	440.0	462.8		
		45.0	177.1	248.7	344.1	410.5	463.5	507.6	541.7		
		25.0	182.8	277.0	379.5	448.6	499.2	536.1	562.0		
ICF 15-4-9H		35.0	205.3	311.3	430.0	514.5	577.0	629.0	668.2		
		45.0	226.5	344.2	480.4	578.5	654.8	718.8	771.7		

An increase in hot gas temperature t_h of 10 K reduces valve capacity approx. 2% and vice versa.

ENGINEERING TOMORROW

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.